The percentage of people with food allergy in the community

By Pia Nørhede

Why is it important to know the percentage of people with food allergy in the community?
Individuals with food allergy develop symptoms after eating foods that for the vast majority of the population are part of a healthy diet. The only way for the allergic individual to manage food allergy is to avoid eating the food that causes the allergic reaction. The level of avoidance required may seriously impair the quality of life of the food allergic individual. The impact also extends to the people (e.g. family, friends, and teachers) around the allergic individual, as all have to be vigilant to protect the allergic individual from the foods, which may trigger an allergic reaction. For that reason, the quality of life of a significant part of the population may be affected by food allergy. We cannot know the extent of the problem without knowing the percentage of people with food allergy in the community.

Many people believe that the percentage of people with food allergy is increasing. However, with few exceptions we do not have any data that can clarify whether this is in fact true. It is a clinical impression that the occurrence of food allergies changes with age and varies across different geographical areas, for example, because of different dietary patterns. If indeed such variations exist, it would be a great help for researchers who are trying to find out why some people develop food allergies.

How do researchers find out the percentage of people with food allergy in the community?
Different studies that have reported on the percentage of people with food allergy have used different study designs. Areas where the studies differ are:

a. Populations included in the study
b. Diagnostic procedures used to identify food allergies

Who to include in the study?
Food allergies need to be assessed in a representative sample of a population in order to obtain a reliable estimate of the percentage of people with food allergy in the general population. Many studies have reported the percentage of people with food allergy in a selected group of people, for example, people with symptoms of allergy. In such a selected group of people, food allergies will be more common than in the community.

Even if the food allergy is assessed in a representative sample of a population, the proportion of people who agree to participate in the study may be low, which would influence the result. Studies with low response rates tend to give a result with a higher percentage of people with food allergy, probably because people who are responding have more problems in connection with food intake than the ones who do not respond.
How to diagnose food allergies?

Most studies performed in a representative sample of the population have used questionnaires to ask people if they believe they are allergic to food. The quality and results of such studies varies depending on the quality and design of the questionnaire. Some studies have used short questionnaires based on as little as 2 questions while others have used a screening questionnaire combined with an interview to confirm suspicion of food allergy. Different questions may give different results. The question: “Have you ever had a food allergic reaction?” gives a different result from: “Have you had a food allergic reaction during the last year?”. Studies with self-reported food allergy will tend to overestimate the percentage of people with food allergy in the community, as one might not be able to tell the difference between allergy and other reactions to foods as the symptoms may be similar. Strawberries, citrus fruit, and tomatoes are examples of foods that may cause allergy-like symptoms in individuals that are not allergic. In addition, we will often eat some foods such as vegetables in mixed dishes, which make it difficult to pinpoint the food that may be responsible for an adverse reaction.

When medical specialists diagnose food allergies they will as a first step talk with and examine the patient for signs of allergic symptoms. This information will help the specialists decide which tests are appropriate. The first test is usually a test for the detection of IgE antibodies to different foods. Normally we produce IgE antibodies to fight infections caused by parasites. In some people for yet not known reasons the immune system produces IgE antibodies to harmless things like foods. **Skin prick testing** and **blood tests** are the main tests used to detect food-specific IgE antibodies. The presence of IgE antibodies to a specific food indicates that this person may experience allergic symptoms when eating that particular food. However, it is possible to have specific IgE antibodies without developing symptoms. Therefore, it is normally necessary to perform a provocation or **challenge test** with the suspect food to confirm a food allergy. This involves introducing the food to the patient in gradually increasing amounts under controlled conditions. Many specialists believe that the challenge test is the gold standard to diagnose food allergy. Others may make a diagnosis based on convincing symptoms and a positive test for food-specific IgE antibodies as it is not always feasible to use the challenge test. Different kinds of skin prick and blood tests exist, and the food challenge test may be performed in different ways in different studies. These factors explain the huge diversity of study designs to assess the percentage of people with food allergy.

How common is food allergy?

This is a question that it is very difficult to answer because different studies provide different results due to the diversity in study designs.

Recently, researchers in EuroPrevall, which is an EU-funded project about food allergy, looked at more than 900 previously published studies to assess the percentage of people with food allergy in the community. More than 120 foods have been described as causing food allergies, but only a limited number of those cause most allergic reactions. Only about 60 studies assessed food allergies in representative samples of different populations and could therefore be used to estimate the percentage of people with food allergy. The studies included were those reporting percentages for allergy to any food. In addition the researchers included studies specifically on allergy to milk, egg, peanut, fish, shellfish, fruit, vegetables, tree nuts, wheat, soy, and a few other edible plants. Most of the studies were on self-reported allergy to any food. In other studies the persons suspecting food allergy had a skin prick test or a blood test or had their food allergy confirmed by a challenge test.
The diagram below illustrates the range of reported and detected food allergy found in different studies. It can be seen that if people are asked in surveys if they have food allergies, 3 - 38% answer that they do although only two studies had figures above 20%. If those people who believe they have food allergy are challenged with the food that they think causes their allergy, only 1 - 11% have their food allergies confirmed. Most of the studies in which food allergy is clinically proven report percentages between 1 and 5 % of the total population as having any food allergy. So there is a large gap between the percentage of people who think they have a food allergy and the percentage of people who are diagnosed as allergic. In general, the same effect is apparent when specific foods (with the exception of soy and wheat) are investigated - self-reported food allergy is overestimated compared to clinically proven food allergy.

Results of previously published food allergy studies that were evaluated by EuroPrevall researchers. The horizontal bars show the range from the lowest to the highest reported and detected percentages of people with food allergy in different studies. The small vertical bars show the distribution of studies across each bar. The ranges in the graph summarise a large number of studies. Please see the graphs in the two scientific papers mentioned at the end for further details regarding any food.
In addition to what can be seen from the diagram, the researchers found that milk and egg allergy tend to be more common among 0-4 year old children. This is in line with the clinical experience that many children outgrow allergy to milk and egg.

Clinically proven food allergy to specific fruits, vegetables and tree nuts was well below 1% of the total population for the studies with response rates higher than 40%.

Self-reported food allergy to fruits and vegetables was higher in children than in adolescent or adults. Researchers reported the highest percentages of perceived food allergy in young children to apple, citrus fruit, carrot and tomatoes. However, as citrus fruit and tomatoes may cause allergy-like symptoms in individuals that are not allergic some of these percentages may be overestimated.

Self-reported food allergy to tree nuts was higher in adolescent or adults than in children, possibly due to the time of introduction into the diet. Botanically peanut is a legume and not a nut. However, as some researchers may have included peanut when they have reported on the percentage of people with allergies to nuts some of the percentages for tree nuts in the above diagram may be overestimated.

In adults, clinically detected allergy to wheat (mainly assessed by blood tests) was in general higher than self-reported allergy. On the contrary, in children self-reported allergy to wheat was slightly higher than clinically detected allergy (mainly assessed by challenge and skin prick tests).

Except for 3 Swedish studies, the percentage of people with allergy to soy (according to blood tests or self-reported) was well below 1% regardless of the diagnostic method used or the age group.

The researchers analysed the studies to see if it would be possible to combine the results of the different studies and make an estimation of the overall percentage of people with food allergy in the community. The analysis showed that the results between the studies varied so much that it was not meaningful to combine the results and calculate either the overall proportion of people with food allergy or the proportion with allergy to the specific foods.

One explanation for the large variation between studies is that there are real differences between countries, and not just differences because of the way the studies were designed. One study in 15 different countries (using the same method) showed a variation in self-reported food allergy from 4.6-18%. This would indicate real differences between countries. Geographical dietary differences as well as a cultural aspect (some people may tend to report problems to food sooner) may explain real differences. However, another explanation for the large variation might be that most of the studies used different methods to diagnose food allergy and had different response rates.

The recent analysis points to the need for researchers to use the same method for diagnosis of food allergy in order to use the results to estimate the percentage of people with food allergy in the community and look at possible regional differences.
Research within EuroPrevall on the percentage of people with food allergy in the community

A main objective of EuroPrevall is to establish the true percentage of infants, children and adults with food allergies across Europe.

More than 12,000 newborns from 9 different countries in Europe will participate in a study that will investigate the occurrence of food allergies in the first 2½ years of life. The researchers will interview the mothers regularly. They will conduct allergy testing if a child shows symptoms of a possible food-related allergy. The 9 different countries participating in the study cover a range of different cultures and climates in Europe. The researchers will see if the occurrence of food allergy is the same in all countries. If differences do exist the researchers will explore whether the differences can be explained by, for example, different eating habits or pollen exposure. The EuroPrevall study with newborns is the most comprehensive investigation of food allergies in the first years of life to date.

Additionally, about 30,000 school-age children and adults from 10 European countries and Russia will participate in a community survey. As for the study with newborns, the researchers aim to determine the percentage of children and adults with different kinds of food allergy. The study with school-age children will take place in schools, where the researchers will ask the children about symptoms that may be related to food allergy using a questionnaire. The researchers will conduct allergy testing in an allergy clinic for those children showing symptoms of a possible food-related allergy. The researchers will identify adults for the study, for example, by using lists of patients from general practitioners.

When the results of these studies are available in a few years’ time, we should have a much clearer picture of the true percentage of people with food allergy in the general population and the differences that may exist across Europe.
The above text is based on the papers:

EuroPrevall is an EU-funded project about food allergy. The primary objective of EuroPrevall is to improve the quality of life for all food allergic consumers. To meet that objective EuroPrevall will conduct research to obtain information that we currently lack. EuroPrevall will also develop the tools necessary to manage food allergies more effectively. The 63 partners from 25 different countries include some of the leading allergy research organisations in Europe as well as clinical, patient, and industrial organisations. Visit www.europrevall.org for more information on the project.